

Workshop Manual

3171

CONTENTS

Safety precautions	_ 3
Data plate interpretation	4
Technical data	_ 6
Tools	_ 7
Service and Inspection	_ 9
Electrical connections	_11
Sensor connections	14
Design of the pump	_16
Dismantling	18
Assembly	33
Impeller trimming, NT-version	53
Exploded views	58

SAFETY PRECAUTIONS

In order to minimize the risk of accidents in connection with service work, the following rules should be followed:

- Before starting work on the pump, make sure that the pump is isolated from the power supply and cannot be energized.
- Bear in mind the risk of accidents. Make sure that the machine or parts of the machine cannot roll or fall over and injure people or damage property.
- Make sure that the lifting equipment can handle the weight you want to lift and that it is in good condition.
- Make continuously sure that, in the course of the work, the pump and / or pump components stand steadily and cannot fall down and cause damage.
- Don't work under suspended load.
- Carry out the work on a sturdy workbench.
- Bear in mind the danger of electrical accidents.
- Bear in mind health hazards. Observe strict cleanliness. When carrying out repair work take care to avoid injury by cutting or pinching.
- Make sure you have a first-aid box near at hand.
- Check that tools and other equipment are in good condition.

Follow all other health and safety regulations, local codes and ordinances.

General rules

Wash the outside of the pump thoroughly.

Before assembly:

- Clean all parts thoroughly, particularly O-ring grooves.
- Always change all O-rings, gaskets, washers and seals.
- Lubricate all springs, screws and O-rings with grease.

ITT Flygt disclaims all responsibility for work done by untrained, unauthorized personnel.

DATA PLATE INTERPRETATION

General data plate

- A Serial number
- B Product code + Number
- C Curve code / Propeller code
- D Country of origin
- E Product number
- F Additional information
- G Phase; Type of current; Frequency
- H Rated voltage
- I Thermal protection
- J Thermal class
- K Rated shaft power

- L International standard
- M Degree of protection
- N Rated current
- O Rated speed
- P Max. submergence
- Q Direction of rotation: L=left, R=right
- R Duty class
- S Duty factor
- T Product weight
- U Locked rotor code letter
- V Power factor

DATA PLATE INTERPRETATION

Approval plates

These approval plates apply to an explosion proof submersible Flygt pump and are used together with the general data plate on the pump.

EN: European Norm

ATEX Directive

European standards EN 50014, EN 50018 and EN 1127-1 EEx d II B T3 for ambient temperatures $\leq 40^\circ C$

- A Approval
- B Approval authority + Approval Number
- C Approval for Class I
- D Approved drive unit
- E Stall time
- F Starting current / Rated current
- G Duty class
- H Duty factor
- I Input power
 - FM: Factory Mutual according to standard 3615 as: Class I Div. I Grp C and D Class II and III Div. I Grp E, F and G

Max. ambient temperature

- J Rated speed
- K Controller
- L Additional information
- M Max. ambient temperature
- N Serial number

TECHNICAL DATA

Weights

The weight varies depending on the version:

3171 270-399 kg (594-878 lb)

For the pump's current, voltage, power ratings, and speed, please refer to the data plate of the pump.

Tightening torques

RECOMMENDED TIGHTENING TORQUE FOR FLYGT STANDARD SCREWS IN Nm AND ft-Ib

Chart valid only for lubricated screws. Use lubricant 90 18 00 or 90 20 59.

Material	Stainless (A2, A4)					
	Property class					
Thread		70			8	0
	Nm	ft-lb	Nm	ft-lb	Nm	ft-lb
M5	4,1	3	2,0	1,5	5,4	4
M6	7	5,2	4,1	3	9,3	6,9
M8	17	12,5	7	5,2	22	16
M10	33	24,3	17	12,5	44	32
M12	57	42	33	24,3	76	56
M16	140	103	57	42	187	138
M20	273	201	100	74	364	268
M24	472	348	140	103	629	464
Type of screw						

All Flygt standard screws are made of stainless steel. Size M6 belongs to Property class 70 while all other sizes belong to class 80.

A mix of water and stabilized monopropyleneglycol in a mixture ratio of 70/30 % volume part. Known trade marks of monopropyleneglycol are: Dowcal N (individual components are approved by FDA), Dowcal 20. These are non-poisonous, heat-and-cold resistant and inhibiting of corrosion. Use of other type of glycol will jeopardize the function of the pump.

TOOLS

Partno	Denomination	Range of use
83 95 42	Pump	Inspection room
84 08 02	Circlip plier (SGA 19-60 mm)	Mechanical seal unit
84 08 11	Circlip plier (SGH 85 165 mm)	Outer bearing
84 08 60	Crow bar (2x)	Mechanical seal unit
84 10 16	Ratchet handle	Sockets
84 11 40	Combination wrench	Level switch
84 13 03	Hexagon bit adapter	Terminal's rail, earthing
84 13 05	Hexagon bit adapter	Plugs, connection cover, lift handle
84 13 06	Hexagon bit adapter	Impeller screw, cable entry, seal housing cover
84 13 01	Hexagon bit adapter	Pump housing
84 13 62	Puller	Inner bearing
84 14 80	Hexagon bit adapter	Impeller
84 14 89	Allen keys set (9x)	Mechanical seal unit
84 15 55	Extension bar (L= 125 mm)	Sockets
332 91 00	Puller	Spring
398 57 00	Mounting sleeve	Mechanical seal unit
651 19 00	Mounting/dismounting tool	Main bearing
608 23 00	Stand	Pump fixation

Dismantling/Assembling tool 6511900 Dismantling

651 18 00

SERVICE AND INSPECTION

Service/Inspection

ITT Flygt recommends a preventive maintenance program based on Intermediate and Major Services at regular intervals. For standard sewage applications, where FLS10 is correctly connected and in use and the temperature of the pumped liquid is 40°C (104°F) or less, an *Intermediate Service* should be performed every 8000 hours or every 2 years, whichever occurs first. The time between *Major Service* could vary considerably depending on operating conditions and the need for a Major Service will be determined during the regular Intermediate Services.

However, a minimum of 20 000 hours of operation could be anticipated.

For other applications than sewage water or for specifc operating conditions, other sevice intervals may be recommended.

Pump	Intermediate Service running 8 000 h or 2 years
Junction box	Check that it is clean and dry.
Terminal board	Check that the connections are properly tightened.
Isolation check	Check that the resistance between earth and phase lead is more than 1 M Ω .
Cable	Check that the rubber sheating jacket is undamaged.
Sealhousing	Fill up with new coolant if necessary. Check freezing point (lower than -13°C/9°F).
Inspection chamber	Drain all liquid if any. Check the resistance of the FLS10. Normal value approx.1200 Ω , alarm approx. 430 Ω .
O-rings	Always replace the O-rings of the filling plugs and at the junction cover.
Thermal contacts	Check the resistance. Normally closed circuit; interval 0 - 1 Ω .
Thermistor	Check the resistance 20- 250 Ω , (measuring voltage max 2 V DC).
Impeller	Check impeller clearance and adjust if necessary.
Liftinghandle	Check the screws and the status of the lifting handle.

Rotation direction	Check the rotation of the impeller.
Lifting device	Check that local safety regu- lations are followed.
Voltage and ampe- rage	Check running values.
Pumpstation	Intermediate Service running 8 000 h or 2 years
Flastrian and in stal	
panels	dry.
panels Connection to power	Check that they are clean and dry. Check that the connections are properly tightened.
panels Connection to power Overload and other protections	Check that they are clean and dry. Check that the connections are properly tightened. Check correct settings.
panels Connection to power Overload and other protections Personnel safety	Check that they are clean and dry. Check that the connections are properly tightened. Check correct settings. Check guard rails, covers and other protections.

SERVICE AND INSPECTION

If any indication of alarm between in- spections, please see instructions below.	Actions
FLS10	Drain the fluid in the inspection chamber. Fill upt with new coolant if necessary. Check freezing point (lower than -13°C/9°F). Check the inspection chamber again after one week of ope- ration. If leakage has occured, drain the fluid and change the mechanical seal unit and replace with new coolant.
Thermistor/Thermal- contact	Check coolant level. (pump with cooling jacket) Check start and stop levels.
Overload protection	Check that the impeller can rotate freely.

ELECTRICAL CONNECTIONS

SUBCAB 4G/SUBCAB AWG*

* SUBCAB AWG

Mains	Lead	Pump terminal board	Stator leads connection: Stator lead	Pump terminal board
L1	Brown/(Red*)	U1	U1, red	U1
L2	Blue (White*)	W1	W2, black	W2
L3	Black (Black*)	V1	V1, brown	V1
Earth (Ground)	Yellow/Green	Ŧ	U2, green	U2
Groundcheck (GC)	Yellow		W1, yellow	W1
			V2, blue	V2
Control	Cablelead			
T1	T1/orange*			
T2	T2/blue*			

ELECTRICAL CONNECTIONS

* SUBCAB

Mains	Lead	Pump terminal board	Stator lead	Pump terminal board
L1 L2 L3 L1 L2 L3 Earth (Ground)	1 black 2 black 3 black 4 black 5 black 6 black Yellow/Green	U1 W1 V1 W2 V2 U2 ⊥	U1, red W2, black V1, brown U2, green W1, yellow V2, blue	U1 W2 V1 U2 W1 V2
Control T1	Cable lead T1 black			
T2	T2 black			

ELECTRICAL CONNECTIONS

SUBCAB 4G/SUBCAB AWG*

* SUBCAB AWG

Mains	Lead	Pump terminal board	Mains	Lead	Pump terminal board
L1	Brown/(Red*)	U1	L1	Brown/(Red*)	U1
L2	Blue (White*)	W1	L2	Blue (White*)	W1
L3	Black (Black*)	V1	L3	Black (Black*)	V1
Earth (Ground)	Yellow/Green	Ŧ	Earth (Ground)	Yellow/Green	Ť
Groundcheck (GC)Yellow		Groundcheck (GC	;)Yellow	
Stator leads 460V	-Y SER connection	:	Stator leads 230V	-Y// connection:	
Stator lead		Pump terminal	Stator lead		Pump terminal
		board			board
U1, red		U1	U1, red		U1
W2, black		W2	U5, red		U5
V1, brown		V1	V1, brown		V1
U2, green		U2	V5, brown		V5
W1, yellow		W1	W1, yellow		W1
V2, blue		V2	W5, yellow		W5
V5, brown			U2, green		
W5, yellow			V2, blue		
U5, red			W2, black		
Control	Cablelead				
T1	T1/orange*				
T2	T2/blue*				

SENSOR CONNECTIONS

Monitoring equipment

The **FLS10** sensor is installed in the inspection chamber and consists of a small float switch.

The FLS10 sensor is connected in series with the stator thermal contacts. They should be connected to an alarm relay, type Mini CAS II, in accordance with the following diagram.

Thermal contacts are incorporated into the stator and may be used for voltages up to 250 V, rated current 10 A ($\cos \varphi = 1$) / 6.3 A ($\cos \varphi = 0.6$). ITT Flygt recommends that they are connected to 24 V over separate fuses to protect other automatic equipment.

For a **PTC-thermistor** (PTC = \underline{P} ositive \underline{T} emperature \underline{C} oefficient), there is a significant increase in resistance at a certain temperature that can be utilized for monitoring the temperature. PTC-thermistor

T=25 °C	$R \le 100 \text{ Ohm}$
T=135 °C (T _{REF} - 5 °C)	$R \le 550 \text{ Ohm}$
T=145 °C (T _{REF} + 5 °C)	R ≥ 1330 Ohm

Three thermistors are connected in series and have a resistance of approx. 150-300 ohms at room temperature.

The label in the junction box shows if the pump is equipped with optional sensors

Sensor connection for standard configuration

The pump is as standard equipped with either thermal contacts or thermistors.

A)Thermal contacts

B)Thermistors

SENSOR CONNECTIONS

- FLS10 + thermal contacts
- 0 mA = Overtemperature
- 10 mA = *OK*
- 28 mA = Leakage

Tolerance 10%

Sensor Connection Table

(For further information please contact Flygt representative.)

Sensor	Sensor lead	Thermal connection	Control cable	Connected to
Thermal	White	T1	T1/*Orange	Mini CAS II
contacts	Brown	T2	T2/*Blue	Mini CAS II
+	White+Brown	T15	= SubCab	
FLS10			/* SubCabAWG	
Thermistors	Red	T1	1	Thermistor relay
+	Red	T2	2	Thermistor relay
FLS10	Brown	T15	3	Mini CAS II
	Brown	T16	4	Mini CAS II

DESIGN OF THE PUMP

Motor

Squirrel-cage 3-phase induction motor for 50 Hz or 60 Hz.

The motor is started by means of direct on-line or star delta start.

The motor can be run continuously or intermittently with a maximum of 15 evenly spaced starts per hour. Flygt motors are tested in accordance with IEC 34-1.

The stator is insulated in accordance with class H (180° C, 355° F). The motor is designed to supply its rated output at \pm 5% variation of the rated voltage. Without overheating the motor, \pm 10% variation of the rated voltage can be accepted provided that the motor does not run continuously at full load. The motor is designed to operate with a voltage imbalance of up to 2% between the phases.

Bearings

Both the support bearing and the main bearing of the shaft are double row angular contact ball bearings.

Mechanical seal unit

The pump has one shaft mechanical seal unit consisting of two independently operating seals:

Alt I	Inner seal:	Aluminum Oxide/Carbon Al ₂ O ₂ /CSb
	Outer seal:	Corrosion resistant cemented carbide WCCR/WCCR
Alt II	Inner seal:	Corrosion resistant cemented carbide WCCR/WCCR
	Outer seal:	Corrosion resistant cemented carbide WCCR/WCCR
Alt II	I Inner seal:	Aluminum Oxide/Corrosion resistant cemented carbide ALO_/WCCR
	Outer seal:	Silicon Carbide RSiC/RSiC

Monitoring equipment

The stator incorporates three thermal contacts connected in series that activate an alarm at overtemperature.

The thermal contacts: open at 140° C (285 F°). The sensors shall be connected to Flygt's monitoring unit MiniCAS II or equivalent unit.

The monitoring equipment shall be of a design that makes automatic restart impossible.

The 3171 is supplied with inspection sensor FLS10 for sensing the presence of any liquid in the inspection chamber.

Cooling (without cooling jacket) The pump is cooled by the ambient liquid. For lowest liquid level, see illustration below *).

Without cooling jacket

Seal housing

A coolant fluid lubricates and cools the mechanical seal unit and acts as a buffer between the pumped media and the electric motor.

FLYGT 3171

DESIGN OF THE PUMP

DISMANTLING

Emptying of coolant Version with cooling jacket (Fig 1 - 3)

1. Remove the inspection plug.

2. Pump out any coolant from the inspection chamber. Refit the inspection plug and tighten it (44 Nm).

 Remove the pump from the pump housing. Place the pump in a horizontal position. Place a container under the pump (approx. 17 litres / 18 US quarts). Remove the coolant filling plug. Remove the vent plug and empty the coolant.

Emptying of coolant Version without cooling jacket (Fig. 4 -7)

4. Remove the inspection plug.

5. Pump out any coolant.

6. Remove the pump from the pump housing. Place the pump in a horizontal position. Unscrew the two filling plugs. Drain the pump (volume approx. 4,6 litres / 4,9 quarts).

7. Alt: If pump is upright, pump out the coolant.

8. Remove the connection cover screws.

9. Lift off the connection cover. Disconnect the motor cable leads.

jacket.

10. Remove the coolant filling plugs. Screw two M16 screws (about 50 mm long) into the coolant filler holes of the cooling jacket. Lift off the outer cooling jacket.

11. Remove the screws and washers retaining the

inner cooling jacket. Lift off the inner cooling

- 12. Bolt the assembly/dismantling stand in position. Secure it by means of the screws for the connection cover.

- **14**
- **15**

13. Place the pump horizontally. Remove the flush valve cover and insert a rod (wooden or plastic) through the hole . Remove the impeller screw.

Procedure for NT-version, see pages 53-57

14. Turn the trim screw counter clockwise until the impeller is free from the shaft. Use a 12 mm hexagon bit adapter with a length of min. 100 mm.

15. Refit the impeller screw by hand, just to prevent the impeller from falling off.

16. Remove the rod and raise the pump. Remove the pump housing screws.

- 17. Lift the drive unit out of the pump housing.
- **18**
- 18. Place the drive unit horizontally. Remove the impeller screw.

19. Remove the impeller.

20. Screw in an M12 lifting eyebolt (55 mm long) into the shaft end.

21. Place the drive unit upside down on the stand.

21

22. Remove the screws retaining the seal housing cover.

23. Fit two lifting eyebolts to the seal housing bottom and remove it.

24. Remove the circlip.

3171

25a. Remove the mechanical seal unit (picture shows version without cooling jacket).

25b. Remove the mechanical seal unit (picture shows version with cooling jacket).

26. Remove the O-ring from the shaft.

- **FLYGT** 3171
- 26. Remove the flow diffuser.

27. Remove the screws for the adapter.

28. Fit two lifting eyebolts to the adapter and lift it off.

30. Screw the lifting eyebolt into the shaft end. Carefully lift out the shaft unit. Disconnect the sockets for FLS10. Lower the shaft unit back into position

31. Remove the inner circlip.

32. Remove the washer.

33. Remove the outer circlip.

34. Bolt the puller cylinder onto the bearing holder. (For further details see dismantling tool drawing, page 8).

35. Oil the puller screw and screw it in.

36. Withdraw the bearing holder with bearing.

37. Place the puller drift in a vice. Remove the puller screw. Place the bearing holder with puller cylinder onto the puller drift. Screw in the threaded rod by hand until it bottoms.

3171 FLYGT

38 . Fit the washer and screw on the long hexagonal nut.

39. Withdraw the bearing.

40. Place the rotor/shaft unit in the rotor support. Use a bearing puller to remove the support bearing.

ASSEMBLY

41. Place the rotor/shaft unit on a suitable piece of tube. Oil the shaft end.

42. Place the support bearing on the shaft end, regardless of which face is up.

43. Grease the surface of the bearing. Use the bearing fitting tool (SKF) to hammer down the bearing.

44. Place the support washer in the bearing holder.

45. Oil the bearing seat.

46. Place the bearing in position, regardless of which face is up.

47. Place the tool piston on the bearing. (For further details see assembly tool, page 8).

48. Place the puller cylinder over the piston.

49. Bolt the puller cylinder to the bearing holder.

50. Oil the puller screw and use it to press the bearing into place.

51. Check that the support washer is in its right position.

52. Fit the outer circlip. N.B. Check that the circlip taper is in contact with the corresponding taper surface on the bearing holder (see A, picture 53).

53. Bearing holder taper.

54. Oil the rotor shaft. Place the bearing holder on the shaft.

55. Place the puller tube against the bearing holder.

56. Screw in the threaded rod by hand until it bottoms.

57. Fit the washer and the long hexagonal nut. Tighten the nut by hand until it bottoms.

58. Fit the bearing and the bearing holder.

59. Fit a new greased O-ring.

60. Fit the washer.

61. Fit the inner circlip.

- **FLYGT** 3171
- 62. Fit a new, greased O-ring on the bearing holder.

63. Screw the lifting eyebolt into the shaft end. Carefully lift the rotor/shaft unit with bearing holder. Grease the surface of the bearing holder.

64. Connect the sockets for the FLS10. Lower the rotor/shaft unit, at the same time turning the bearing holder clockwise to the index mark (see B, picture 65). Check that the sockets are between the coil end and the stator housing.

65. Bearing holder index. B = in line with the mark in the stator housing.

66. Grease the spring and fit it in position.

66. Fit a new, greased O-ring at the underside of the adapter.

68. Fit a new greased O-ring at the top of the adapter.

69

69. Fit the adapter. Fit the screws . Tighten diametrally (76 Nm).

70. Place the flow diffuser in position. Press it down until it bottoms.

<image>

71a. Grease the shaft. Fit a new mechanical seal unit (oiled). N.B. Check that the drive pin engages in the drive groove in the shaft. (Picture shows version without cooling jacket)

71b. See 71a. (Picture shows version with cooling jacket)

72a. Fit the circlip (picture shows version without cooling jacket).

72b. Fit the circlip (picture shows version with cooling jacket).

73. Use a suitable sleeve to press down the circlip.

74. Make sure the circlip is in position.

75. Fit new, greased O-rings to the seal housing cover.

76. Fit the seal housing cover.

77. Tighten the screws diagonally (76Nm).

78. Grease the shaft end.

79. Grease the conical sleeve and the threads of the gland screw. Adjust the gland screw so that it is flush with the sleeve.

80. Fit the sleeve and impeller to the shaft. Fit the impeller screw by hand just to prevent the impeller from falling off.

Procedure for NT-version, see pages 53-57

81. Fit a new greased O-ring to the seal housing cover.

- 82
- 82. Place the drive unit in the pump housing. Adjust its position so that the inspection hole is on the same side as the hole for the flush valve. Tighten the screws diagonally (187 Nm).

- 83
- 83. Remove the flush valve cover. Insert a rod (wooden or plastic) through the hole. Remove the impeller screw.

- **FLYGT** 3171
- 84. Turn the gland screw clockwise until the impeller is fit to the pump housing. Tighten it a further 1/8 turn.

- 85. Fit the washer and the greased impeller screw and tighten it (76 Nm). Check that the impeller rotates freely.
- **85**
- 86. Raise the pump. Remove the stand. Fit a new greased O-ring to the inner cooling jacket.

3171 FLYG

87. Fit the inner cooling jacket.

88. Fit the washers and screws and tighten alternately in diagonally opposite pairs (7 Nm).

89. Fit a new greased O-ring to the adapter.

- **FLYGT** 3171
- 90. Fit the outer cooling jacket.

91. Fit a new greased O-ring between the stator housing and the outer cooling jacket.

92. Fit a new greased O-ring to the connection cover.

93. Connect the motor cable leads in accordance with the wiring diagram on the inside of the connection cover (see Fig. 92).

94. Fit the connection cover. Tighten the screws alternately in diagonally opposite pairs (76 Nm).

Filling with coolant Version with cooling jacket (Fig. 95-96)

95. Fill with coolant until it overflows through the opposite hole (approx.17 litres / 18 US quarts).

96. Tighten the coolant filling plugs (44 Nm).

Filling with coolant Version without cooling jacket (Fig. 97-98)

97. Fill with coolant until it overflows through the opposite hole (approx.4,6 litres / 4,9 US quarts).

98.. Tighten the inspection and coolant filling plugs (44 Nm).

Removing/Installing/Trimming the Impeller, dry installed version

99. Remove the drive unit from the pump housing.

100. Remove the impeller and the conical sleeve. Turn the trim screw counter clockwise until the impeller is free from the shaft. Use a 12 mm hexagon bit adapter with a length of min. 100 mm.

101. Grease the sleeve and the shaft end.

103. Measure and note the distance A. See. fig.

102. Unscrew the trim screw approximately 5 mm.

104. Fit the sleeve and the impeller to the shaft.

105. Fit the impeller screw with washer and tighten (76Nm).

106. Make sure that the O-ring is removed from the seal housing cover.

107. Place the drive unit in the pump housing. Check the distance between the seal housing cover and the pump housing with a feeler gauge. Check diametrically at four points.

109. Lift the drive unit out of the pump housing and remove the impeller and conical sleeve.

108. Note the largest measured distance, B. See fig.

110. Calculate the measure C according to formula C = A - B - 0.5mm. Unscrew the trim screw until C is reached.

cover.

111. Fit the sleeve, impeller and impeller screw with washer and tighten (76 Nm).

112. Fit a new greased O-ring to the seal housing

113. Place the drive unit in the pump housing. Adjust its position so that the inspection hole is on the same side as the hole for the flush valve. Tighten the screws diagonally (187 Nm).

Exploded view, version with cooling jacket

Exploded view, version without cooling jacket

30934

Items description

<u>ltem no</u>	Denomination	<u>ltem no</u>	Denomination	
1	Lifting handle	120	Inspection plug (screw)	
2	Socket head screw	122	O-ring	
7	Cable tie	129	Seal housing cover	
8	Data plate	130	O-ring	
9	Instruction plate	131	O-ring	
10	Drive screw alt. rivet	133	Socket head screw	
11	Socket head screw	141	Mechanical seal unit	
13	Earthing plate	145	Socket head screw	
	(Ex-version only)	231	Shrink hose	
14	Control cable	232	Terminal clamp	
	(Ex-version only)	233	Terminal clamp	
15	Gland screw	234	Cross connection	
21.1	Washer	235	End support	
21.2	Seal sleeve	239	Lead through unit	
21.3	Clamp	240	Spring	
23	Motor cable	241	0-ring	
24	Entrance flange	242	Adapter	
26	Socket head screw	243	Socket head screw	
31	O-rina	244	Seal ring	
32	Connection cover	245	O-ring	
33	O-ring	246	O-ring	
35	Socket head screw	247	O-ring	
45	Socket head screw	248	Strip	
53	Socket head screw	249	Clamp	
54	Rail	251	Inspection plug	
56	Earthing plate	252	O-ring	
61	Ball bearing	253	Cooling jacket (inner)	
69	Stator housing	254	Flow diffuser	
72	O-ring	255	Socket head screw	
73	Shaft unit	256	Washer	
73.1	Shaft	270	Lock washer	
73.4	Rotor		(Ex-version only)	
79	Stator			
82	Cooling jacket (outer)			
83	O-ring			
84	O-ring			
88	Cable entry unit			
105	Bearing holder			
107	Retaining ring (circlip)			

Supporting washer Ball bearing Retaining ring (circlip) 109 110

SERVICE LOG

Most recent service date	Pump No.	Hours of operation	Remarks	Sign.

└─────────────────────────────────────
<u></u>

NOTES

www.flygt.com